

# Biosafety Assay Center Animal Technology Institute Taiwan

## Assay Report

No.52, Kedong 2nd Rd., Zhunan Township, Miaoli County 350, Taiwan

Date of Approval: January 24, 2011



Assay Report Biosafety Assay Center, Animal Technology Institute Taiwan

Page No: 2 / 11

### Assay Report

Company: TAQKEY Science (affiliated with Contact Person: Jeffrey Cheung

Bio-Helix Co.,Ltd.)

Date of Submission: 11/15/2010 Tel: 037-625816 VAT No.: 13123259 Fax: 037-611559

Address: 1F., No.60, Jiabei 2nd St., Zhunan Township, Miaoli County 350, Taiwan

Name of Substance Assayed: Product Name: Novel Juice Supplied in 6X Loading Buffer

Cat#: LD001-1000

Number of Substance Assayed: 991112-01

Date of Assay Commenced: 11/01/2010 Date of Assay Completed: 12/24/2010

#### Assay Results:

4.1 The bacterial characteristic verification results for the standard bacterial strains (TA98, TA100, and TA1535) are illustrated on Table 1. The characteristics of the standard bacterial strains (TA98, TA100, and TA1535) were all verified without any deviation.

Table 1. Characteristic Verification Results for the Standard Bacterial Strains (TA98, TA100, and TA1535)

| Bacterial Strains Assayed Assay Criteria               | TA98 | TA100 | TA1535 | Result<br>Comparison |
|--------------------------------------------------------|------|-------|--------|----------------------|
| Histidine Requirement Test I (Biotin Plate)            |      | _     | _      | Conformed            |
| Histidine Requirement Test II (Biotin/Histidine Plate) | +    | +     | +      | Conformed            |
| Rfa Mutation Test                                      | +    | +     | +      | Conformed            |
| Δ <i>uvrB</i> Mutation Test                            | _    | _     | _      | Conformed            |
| R-Factor Test                                          | +    | +     | _      | Conformed            |
| pAQ1 Plasmid Test                                      |      | _     | _      | Conformed            |

#### Remark:

+: Indication of bacterial growth. The *rfa* test indicates a positive result.

—: Indication of no bacterial growth. The *rfa* test indicates a negative result.

#### 4.2 AMES Test – Toxicity Test Results:

4.2.1 Before the reactions occurred for the toxicity test of the AMES Test, the original bacterial T-04-01E

Page No: 3 / 11

population for the bacterial strain (TA100) being tested was  $6.3 \times 10^8$  CFU/mL, which conformed to the assessment standard,  $10^{6\sim 9}$  CFU/mL.

- 4.2.2 For the results of the experiment group deficient of S9, the concentrations of the testing substance, 991112-01, were 1-fold, 5-fold, 25-fold, and 125-fold diluted solutions. The toxicity was absent in all of them (relative viability rate  $\geq 100\%$ ), thus the stock solution was adopted as the maximum dose for the mutagenicity test of the experiment group lacking S9 for the testing substance, 991112-01.
- 4.2.3 The S9-containing experimen group's results are as illustrated in Table 3. The stock solution of the testing substance, 991112-01, exhibits toxicity (relative viability rate =0.89%, which is lower than 20%). The relative viability rates for the 5-fold, 25-fold, and 125-fold diluted solutions of the testing substance, 991112-01, were 60.46%, 97.69%, and 89.77% did not exhibit any toxicity. Therefore, the 5-fold diluted solution would be used as the S9-containing experiment group's maximum dose for the mutagenicity test on the testing substance, 991112-01.
- 4.3 AMES Test TA98 Mutagenicity Test Results:
- 4.3.1 Before the reactions occurred for the mutagenicity test of the AMES Test, the original bacterial population for the bacterial strain (TA98) being tested was  $1.9 \times 10^9 \,\text{CFU/mL}$ , which conformed to the assessment standard,  $10^{6\sim 9} \,\text{CFU/mL}$ .
- 4.3.2 Mutagenicity Test Results for the Positive Control Group:
  - 4.3.2.1 The results of the positive control group from the S9-deficient experiment group are illustrated in Table 2. The positive control group's mean bacterial population was 69.73 times greater than the negative control group's mean bacterial population; the *p* value was 0.018 and exhibited significance, which was two folds greater and conformed to the assessment standard of *p* value <0.05. Therefore, the reading of the testing substance's results could be conducted.
  - 4.3.2.2 The results of the positive control group from the S9-containing experiment group are illustrated in Table 3. The positive control group's mean bacterial population was 133.09 times greater than the negative control group's mean bacterial population; the *p*

Page No: 4 / 11

value was 0.000 and exhibited significance, which was two folds greater and conformed to the assessment standard of p value <0.05. Therefore, the reading of the testing substance's results could be conducted.

- 4.3.3 Mutagenicity Test Results for the Testing Substance:
- 4.3.3.1 The testing substance's results in the S9-deficient experiment group are as illustrated in Table 2. The mean bacterial populations of the 2-fold, 4-fold, 8-fold, and 16-fold diluted solutions for the testing substance, 991112-01, were 1.02-fold, 1.14-fold, 1.12-fold, and 0.98-fold greater than the negative control group's mean bacterial poluations, respectively. Such was less than the 2-fold magnitude and did not exhibit any significance. Therefore, this method was applied to perform the assay and did not detect any mutagenicity in the 2-fold, 4-fold, 8-fold, and 16-fold diluted solutions of the testing substance, 991112-01.
- 4.3.3.2 The testing substance's results in the S9-containing experiment group are as illustrated in Table 3. The mean bacterial populations of the 5-fold, 10-fold, 20-fold, 40-fold, and 80-fold diluted solutions for the testing substance, 991112-01, were 0.80-fold, 0.73-fold, 0.96-fold, 1.10-fold, and 1.29-fold greater than the negative control group's mean bacterial populations, which was less than the 2-fold magnitude and did not exhibit any significance. Therefore, this method was applied to perform the assay and did not detect any mutagenicity in the 5-fold, 10-fold, 20-fold, 40-fold, and 80-fold diluted solutions of the testing substance, 991112-01.

Page No: 5 / 11

Table 2. TA98 Mutagenicity Test Results (S9-Deficient Experiment Group) for the Testing Substance 991112-01

| Commita                                                 | Negative<br>Control | Positive<br>Control | Testin            | g Substance | 991112-01 | (Dilution F | factor) |
|---------------------------------------------------------|---------------------|---------------------|-------------------|-------------|-----------|-------------|---------|
| No. of Repeat                                           | Group (D-PBS)       | Group (4NOP)#       | 1 X               | 2 X         | 4 X       | 8 X         | 16 X    |
| Repeat 1                                                | 21                  | 1482                | 36                | 11          | 20        | 22          | 21      |
| Repeat 2                                                | 20                  | 1040                | 33                | 23          | 22        | 22          | 21      |
| Repeat 3                                                | 15                  | 1452                | 36                | 24          | 23        | 20          | 14      |
| Mean Bacterial  Population ± Standard  Deviation        | 19 ± 3              | 1325± 247           | 35 ±2             | 19±7        | 22± 2     | 21 ±1       | 19± 4   |
| Mutagenicity = Testing Substance/Negative Control Group |                     | 69.73*              | 1.84 <sup>§</sup> | 1.02        | 1.14      | 1.12        | 0.98    |

Note 1: \* Indication of significance ( p < 0.05)

Note 2: # 4NOP (4-nitro-O-phenylenediamine) as positive cotrol group.

Note 3:  $^{\S}$  The mean bacterial population of the testing substance, 991112-01 (stock solution), was 1.84-fold greater than that for the negative control group, which was < 2-fold, but the p value was 0.001 and exhibited significance.

Table 3. TA98 Mutagenicity Test Results (S9-Containing Experiment Group) for the Testing Substance 991112-01

| Sample        | Negative<br>Control | Positive<br>Control       | Testin | ng Substance | e 991112-01 | (Dilution F | actor) |
|---------------|---------------------|---------------------------|--------|--------------|-------------|-------------|--------|
| No. of Repeat | Group (D-PBS)       | Group (2-AF) <sup>#</sup> | 5 X    | 10 X         | 20 X        | 40 X        | 80 X   |
| Repeat 1      | 21                  | 4368                      | 30     | 23           | 40          | 37          | 35     |

Page No: 6 / 11

| Repeat 2                                                | 42    | 4528     | 23   | 24   | 27   | 30   | 61    |
|---------------------------------------------------------|-------|----------|------|------|------|------|-------|
| Repeat 3                                                | 35    | 4280     | 26   | 25   | 28   | 42   | 32    |
| Mean Bacterial  Population ± Standard  Deviation        | 33±11 | 4392±126 | 26±4 | 24±1 | 32±7 | 36±6 | 43±16 |
| Mutagenicity = Testing Substance/Negative Control Group | 1-    | 133.09*  | 0.80 | 0.73 | 0.96 | 1.10 | 1.29  |

Note 1: \* Indication of significance ( p<0.05)

Note 2: \*2AF (2-aminofluorene) as the positive control group

#### 4.4 AMES Test - TA100 Mutagenicity Test Results:

- 4.4.1 Before the reactions occurred for the mutagenicity test of the AMES Test, the original bacterial population for the bacterial strain (TA100) being tested was  $1.3 \times 10^9 \, \text{CFU/mL}$ , which conformed to the assessment standard,  $10^{6\sim 9} \, \text{CFU/mL}$ .
- 4.4.2 Mutagenicity Test Results for the Positive Control Group:
- 4.4.2.1 The positive control group's results from the S9-deficient experiment group are as illustrated in Table 4. The mean bacterial population of the positive control group was 28.99 times greater than the negative control group's mean bacterial population. The p value was 0.000 and exhibited significance, which was two folds greater and conformed to the assessment standard of p value <0.05. Therefore, the reading of the testing substance's results could be conducted.
- 4.4.2.2 The results of the positive control group from the S9-containing experiment group are as illustrated in Table 5. The mean bacterial population of the positive control group was 22.10 times greater than the negative control group's mean bacterial population. The p value was 0.000 and exhibited significance, which was two folds greater and conformed to the assessment standard of p value <0.05. Therefore, the reading of the testing

Page No: 7 / 11

substance's results could be conducted.

- 4.4.3 Mutagenicity Testing Results for the Testing Substance:
- 4.4.3.1 The testing substance's results in the S9-deficient experiment group are as illustrated in Table 4. The mean bacterial populations of the 1-fold, 2-fold, 4-fold, 8-fold, and 16-fold diluted solutions for the testing substance, 991112-01, were 1.05-fold, 1.08-fold, 1.09-fold, 1.02-fold, and 0.97-fold greater than the negative control group's mean bacterial populations, which was less than the 2-fold magnitude and did not exhibit any significance. Therefore, this method was applied to perform the assay and did not detect any mutagenicity in the 1-fold, 2-fold, 4-fold, 8-fold, and 16-fold diluted solutions of the testing substance, 991112-01.
- 4.4.3.2 The testing substance's results in the S9-containing experiment group are as illustrated in Table 5. The mean bacterial populations of the 5-fold, 10-fold, 20-fold, 40-fold, and 80-fold diluted solutions for the testing substance, 991112-01, were 1.01-fold, 1.03-fold, 0.96-fold, 1.05-fold, and 1.01-fold greater than the negative control group's mean bacterial populations, which was less than the 2-fold magnitude and did not exhibit any significance. Therefore, this method was applied to perform the assay and did not detect any mutagenicity in the 5-fold, 10-fold, 20-fold, 40-fold, and 80-fold diluted solutions of the testing substance, 991112-01.

Table 4. TA100 Mutagenicity Test (S9-Deficient Experiment Group) Results for the Testing Substance 991112-01

| Comple        | Negative<br>Control | Positive<br>Control | Testing Substance 991112-01 (Dilution Factor) |     |     |     |      |
|---------------|---------------------|---------------------|-----------------------------------------------|-----|-----|-----|------|
| No. of Repeat | Group (D-PBS)       | Group (SA)#         | 1 X                                           | 2 X | 4 X | 8 X | 16 X |
| Repeat 1      | 110                 | 4184                | 160                                           | 149 | 168 | 136 | 144  |
| Repeat 2      | 180                 | 4288                | 151                                           | 151 | 162 | 145 | 150  |
| Repeat 3      | 148                 | 4224                | 150                                           | 175 | 148 | 165 | 128  |

Page No: 8 / 11

| Mean Bacterial        |        |         |       |        |        |        |        |
|-----------------------|--------|---------|-------|--------|--------|--------|--------|
| Population ± Standard | 146±35 | 4232±54 | 154±6 | 158±14 | 159±10 | 149±15 | 141±11 |
| Deviation             |        |         |       |        |        |        |        |
| Mutagenicity =        |        |         |       |        |        |        |        |
| Testing               |        | *       | 1.05  | 1.00   | 1.00   | 1.02   | 0.07   |
| Substance/Negative    |        | 28.99   | 1.05  | 1.08   | 1.09   | 1.02   | 0.97   |
| Control Group         |        |         |       |        |        |        |        |

Note 1: \* Indication of significance ( p<0.05)

Note 2: \* SA (Sodium azide) as positive control group

Table 5. TA100 Mutagenicity Test (S9-Containing Experiment Group) Results for the Testing Substasnce 991112-01

| Comple                                                  | Negative<br>Control | Positive<br>Control       | Testing Substance 991112-01(Dilution Factor) |       |        |       |       |  |
|---------------------------------------------------------|---------------------|---------------------------|----------------------------------------------|-------|--------|-------|-------|--|
| No. of Repeat                                           | Group ( D-PBS )     | Group (2-AF) <sup>#</sup> | 5 X                                          | 10 X  | 20 X   | 40 X  | 80 X  |  |
| Repeat 1                                                | 156                 | 3336                      | 146                                          | 160   | 169    | 159   | 158   |  |
| Repeat 2                                                | 156                 | 3268                      | 152                                          | 159   | 145    | 163   | 155   |  |
| Repeat 3                                                | 150                 | 3604                      | 170                                          | 157   | 131    | 162   | 155   |  |
| Mean Bacterial                                          | 154±3               | 3403±178                  | 156±12                                       | 159±2 | 148±19 | 161±2 | 156±2 |  |
| Mutagenicity = Testing Substance/Negative Control Group |                     | 22.10                     | 1.01                                         | 1.03  | 0.96   | 1.05  | 1.01  |  |

Note 1: \* Indication of significance ( p<0.05)

Note 2: # 2AF (2-aminofluorene) as positive control group

#### 4.5 AMES Test - TA1535 Mutagenicity Test Results:

4.5.1 Before the reactions occurred for the mutagenicity test of the AMES Test, the original

Page No: 9 / 11

bacterial population for the bacterial strain (TA1535) being tested was  $3.3 \times 10^9$  CFU/mL, which conformed to the assessment standard,  $10^{6\sim 9}$  CFU/mL.

- 4.5.2 Mutagenicity Test Results for the Positive Control Group:
- 4.5.2.1 The positive control group's results from the S9-deficient experiment group are as illustrated in Table 6. The mean bacterial population of the positive control group was 36.31 times greater than the negative control group's mean bacterial population. The p value was 0.000 and exhibited significance, which was two folds greater and conformed to the assessment standard of p value <0.05. Therefore, the reading of the testing substance's results could be conducted.
- 4.5.2.2 The positive control group's results from the S9-containing experiment group are as illustrated in Table 7. The mean bacterial population of the positive control group was 201.33 times greater than the negative control group's mean bacterial population. The p value was 0.000 and exhibited significance, which was two folds greater and conformed to the assessment standard of p value <0.05. Therefore, the reading of the testing substance's results could be conducted.
- 4.5.3 Mutagenicity Test Results for the Testing Substance:
- 4.5.3.1 The testing substance's results in the S9-deficient experiment group are as illustrated in Table 6. The mean bacterial populations of the 1-fold, 2-fold, 4-fold, 8-fold, and 16-fold diluted solutions for the testing substance, 991112-01, were 0.79-fold, 0.88-fold, 0.93-fold, 0.81-fold, and 1.29-fold greater than the negative control group's mean bacterial populations, which was less than the 2-fold magnitude and did not exhibit any significance. Therefore, this method was applied to perform the assay and did not detect any mutagenicity in the 1-fold, 2-fold, 4-fold, 8-fold, and 16-fold diluted solutions of the testing substance, 991112-01.
- 4.5.3.2 The testing substance's results in the S9-containing experiment group are as illustrated in Table 7. The mean bacterial populations of the 5-fold, 10-fold, 20-fold, 40-fold, and 80-fold diluted solutions for the testing substance, 991112-01, were 0.88-fold, 1.19-fold, 1.17-fold, 0.83-fold, and 0.76-fold greater than the negative control T-04-01E

Page No: 10 / 11

group's mean bacterial populations, which was less than the 2-fold magnitude and did not exhibit any significance. Therefore, this method was applied to perform the assay and did not detect any mutagenicity in the 5-fold, 10-fold, 20-fold, 40-fold, and 80-fold diluted solutions of the testing substance, 991112-01.

Table 6. TA1535 Mutagenicity Test (S9-Deficient Experiment Group) Results for the Testing Substance 991112-01

| Sample                                                  | Negative                    | Positive                              | Testin | g Substance | 991112-01 | (Dilution F | Factor) |
|---------------------------------------------------------|-----------------------------|---------------------------------------|--------|-------------|-----------|-------------|---------|
| No. of Repeat                                           | Control<br>Group<br>(D-PBS) | Control<br>Group<br>(SA) <sup>#</sup> | 1 X    | 2 X         | 4 X       | 8 X         | 16 X    |
| Repeat 1                                                | 11                          | 501                                   | 18     | 10          | 11        | 5           | 17      |
| Repeat 2                                                | 14                          | 528                                   | 7      | 13          | 11        | 15          | 18      |
| Repeat 3                                                | 17                          | 496                                   | 8      | 14          | 17        | 14          | 19      |
| Mean Bacterial                                          | 14±3                        | 508±17                                | 11±6   | 12±2        | 13±3      | 11±6        | 18±1    |
| Mutagenicity = Testing Substance/Negative Control Group |                             | 36.31                                 | 0.79   | 0.88        | 0.93      | 0.81        | 1.29    |

Note 1: \* Indication of significance ( p<0.05)

Note 2: \* SA (Sodium azide) as positive control group

Table 7. TA1535 Mutagenicity Test (S9-Containing Experiment Group) Results for the Testing Substance 991112-01

| Sample        | Negative                      | Positive                                | Testi | ng Substanc | e 991112-0 | 1(Diltion Fa | actor) |
|---------------|-------------------------------|-----------------------------------------|-------|-------------|------------|--------------|--------|
| No. of Repeat | Control<br>Group<br>( D-PBS ) | Control<br>Group<br>(2-AF) <sup>#</sup> | 5 X   | 10 X        | 20 X       | 40 X         | 80 X   |
| Repeat 1      | 13                            | 2784                                    | 11    | 11          | 15         | 9            | 8      |
| Repeat 2      | 14                            | 2720                                    | 15    | 17          | 16         | 10           | 15     |

Page No: 11 / 11

| Repeat 3                                                | 16   | 2952     | 11   | 22   | 18   | 16   | 9    |
|---------------------------------------------------------|------|----------|------|------|------|------|------|
| Mean Bacterial                                          | 14±2 | 2819±120 | 12±2 | 17±6 | 16±2 | 12±4 | 11±4 |
| Mutagenicity = Testing Substance/Negative Control Group |      | 201.33   | 0.88 | 1.19 | 1.17 | 0.83 | 0.76 |

Note 1: \* Indiciation of significance (p<0.05)

Note 2: # 2AA (2-amino-anthracene) as positive control group

Assay Performed by: Yihsing Yao